5 research outputs found

    Design and Implementation of Takagi-Sugeno Fuzzy Tracking Control for a DC-DC Buck Converter

    Get PDF
    This paper presents the design and implementation of a Takagi-Sugeno (T-S) fuzzy controller for a DC-DC buck converter using Arduino board. The proposed fuzzy controller is able to pilot the states of the buck converter to track a reference model. The T-S fuzzy model is employed, firstly, to represent exactly the dynamics of the nonlinear buck converter system, and then the considered controller is designed on the basis of a concept called Virtual Desired Variables (VDVs). In this case, a two-stage design procedure is developed: i) determine the reference model according to the desired output voltage, ii) determine the fuzzy controller gains by solving a set of Linear Matrix Inequalities (LMIs). A digital implementation of the proposed T-S fuzzy controller is carried out using the ATmega328P-based Microcontroller of the Arduino Uno board. Simulations and experimental results demonstrate the validity and effectiveness of the proposed control scheme

    A combined methodology of H∞ fuzzy tracking control and virtual reference model for a PMSM

    Get PDF
    The aim of this paper is to present a new fuzzy tracking strategy for a permanent magnet synchronous machine (PMSM) by using Takagi-Sugeno models (T-S). A feedback-based fuzzy control with h-infinity tracking performance and a concept of virtual reference model are combined to develop a fuzzy tracking controller capable to track a reference signal and ensure a minimum effect of disturbance on the PMSM system. First, a T-S fuzzy model is used to represent the PMSM nonlinear system with disturbance. Next, an integral fuzzy tracking control based on the concept of virtual desired variables (VDVs) is formulated to simplify the design of the virtual reference model and the control law. Finally, based on this concept, a two-stage design procedure is developed: i) determine the VDVs from the nonlinear system output equation and generalized kinematics constraints ii) calculate the feedback controller gains by solving a set of linear matrix inequalities (LMIs). Simulation results are provided to demonstrate the validity and the effectiveness of the proposed method

    Design and Hardware Implementation of Modified Incremental Conductance Algorithm for Photovoltaic System

    Get PDF
    This paper deals with the design, simulation and real-time implementation of Maximum Power Point Tracking (MPPT) technique for a Photovoltaic (PV) system. A new modified Incremental Conductance (INC) algorithm is proposed to extract maximum power from PV panels at different levels of temperature and solar irradiation. The considered PV system consists of a PV panel, a DC-DC boost converter controlled by MPPT algorithm and a resistive load. First, the simulation tests of the proposed algorithm using Matlab/Simulink environment are presented, and then, followed by a real-time implementation using Arduino Mega board and a specific package known as ``Simulink support package for arduino hardware'' to validate experimentally the~simulation tests. Simulation and experimental results show that the proposed modified INC algorithm offers much less oscillation around the Maximum Power Point (MPP), fast dynamic response and better performances compared to the conventional INC algorithm

    Analysis and Design of Modified Incremental Conductance-Based MPPT Algorithm for Photovoltaic System

    Get PDF
    This study discusses the design of the Maximum Power Point Tracking (MPPT) technique for photovoltaic (PV) systems employing a modified incremental conductance (IncCond) algorithm to extract maximum power from a PV module. A PV module, a DC-DC converter, and a resistive load constitute the PV system. In the scientific literature, it is well-documented that typical MPPT algorithms have significant drawbacks, such as fluctuations around the MPP and poor tracking during a sudden change in atmospheric conditions. To solve the deficiencies of conventional methodology, a novel modified IncCond method is proposed in this study. The simulation results demonstrate that the updated IncCond algorithm presented allows for less oscillation around the maximum power point (MPP), a rapid dynamic response, and superior performance

    Commande d’une machine synchrone à aimants permanents via des modèles flous de Takagi-Sugeno

    Get PDF
    L’objectif du travail présenté dans ce mémoire est la synthèse de lois de commande pour une machine synchrone à aimants permanents (MSAP) via des modèles flous de type Takagi-Sugeno (TS). Nous avons commencé par la modélisation de la machine synchrone à aimants permanents, le modèle triphasé ainsi que le modèle obtenu à l'aide de la décomposition selon deux axes, en utilisant la transformation de Park. Nous avons présenté également le modèle flou TS de la MSAP obtenu à partir des équations qui décrivent sa dynamique. L’étude de la stabilité et la stabilisation des modèles flous de Takagi-Sugeno est basée sur l’utilisation d’une fonction de Lyapunov et la résolution d’un ensemble convexe d’inégalités matricielles linéaires (LMIs: Linear Matrix inequalies), la stabilisation basée sur l’utilisation de la technique PDC (Parallel Distributed Compensation) est ainsi étudiée. Le principe de la commande PDC (Parallel Distributed Compensation) est de construire un régulateur par retour d’état pour chaque modèle local, la loi de commande globale est obtenue par interpolation des lois de commande linéaires locales. Nous avons étudié, ensuite, la stabilisation de la machine synchrone à aimants permanents, en se basant sur la technique PDC. La commande par retour d’état suppose la disponibilité complète des variables d’état du système, ce qui n’est pas toujours possible. Nous sommes donc amenés à considérer des problèmes où la commande dépend uniquement de la sortie mesurée du système. Dans ce sens, nous avons étudié la commande de la machine synchrone à aimants permanents par retour de sorti
    corecore